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Computational analysis of functional
connectivity between areas of primate

cerebral cortex

Klaas E. Stephan1, Claus-C. Hilgetag2, Gully A. P. C. Burns3, Marc A. O’Neill2,
Malcolm P. Young2 and Rolf Ko« tter1,4*

1C. & O.Vogt Brain Research Institute, and 4Institute of Morphological Endocrinology and Histochemistry,
Heinrich Heine University, D- 40225 Du« sseldorf, Germany

2Neural Systems Group, Department of Psychology, University of Newcastle uponTyne, Ridley Building,
Newcastle uponTyne NE1 7RU, UK

3Department of Neurobiology, University of Southern California, Los Angeles, CA 90089-2520, USA

Recent analyses of association ¢bre networks in the primate cerebral cortex have revealed a small
number of densely intra-connected and hierarchically organized structural systems. Corresponding
analyses of data on functional connectivity are required to establish the signi¢cance of these structural
systems. We therefore built up a relational database by systematically collating published data on the
spread of activity after strychnine-induced disinhibition in the macaque cerebral cortex in vivo. After
mapping these data to two di¡erent parcellation schemes, we used three independent methods of analysis
which demonstrate that the cortical network of functional interactions is not homogeneous, but shows a
clear segregation into functional assemblies of mutually interacting areas. The assemblies suggest a
principal division of the cortex into visual, somatomotor and orbito-temporo-insular systems, while motor
and somatosensory areas are inseparably interrelated. These results are largely compatible with
corresponding analyses of structural data of mammalian cerebral cortex, and deliver the ¢rst functional
evidence for `small-world’architecture of primate cerebral cortex.

Keywords: primate cerebral cortex; strychnine neuronography; epilepsy; optimization analysis;
graph theory; multidimensional scaling

1. INTRODUCTION

As the amount of information on the cerebral cortex is
rapidly growing, analyses of this information become
indispensable for unravelling its complex structural and
functional organization. In recent years, a variety of
analytical methods have been successfully applied to data
on association ¢bres revealed by anterograde and retro-
grade tracing studies in the cerebral cortex of mammals.
For example, hierarchical analysis of laminar patterns of
¢bre terminations classi¢ed as ascending, descending or
lateral showed that the primate visual system is hierarchi-
cally organized (Felleman & Van Essen 1991), but that it
is nonetheless not possible to determine a unique visual
hierarchy from this information (Hilgetag et al. 1996).
Optimization analysis of the topological organization of
cortical areas in cats and primates demonstrated that all
major sensory systems are organized sequentially, that
some sensory systems are divided structurally into
`streams of processing’, that the cortical motor system is
embedded in the somatosensory system, and that the
prefrontal and mesial areas are connectionally associated
with each other and with the least peripheral sensory-

processing regions (e.g. Scannell et al. 1995; Young 1992,
1993;Young et al. 1994).

The signi¢cance of these structural analyses will be
determined by the extent to which insights into the struc-
tural organization of the cerebral cortex can help to
unravel the principles of cortical function. If association
¢bre connectivity correlates with the propagation of
activity in the cerebral cortex, then it might be possible to
predict the patterns and spread of activity from data on
anatomical connectivity, or to infer the in£uence of associa-
tion ¢bre connectivity from functional imaging paradigms.
However, the detailed investigation of activity propagation
in the primate cerebral cortex in vivo is hampered by major
technological and ethical problems. At the gross level
required for the delineation of major functional systems,
however, relevant data have already been available for
many decades. It is seldom remembered now that, in the
1930s to 1950s, large parts of the cerebral cortex of the
macaque were systematically tested in vivo for the propaga-
tion of locally induced epileptiform activity by strychnine
neuronography. To date, the large quantities of this
information on activity spread have not been analysed
systematically (see Ko« tter & Sommer (this issue) and
Sommer & Ko« tter (1997) for a preliminary analysis). We
were interested in whether the application of modern
computational analysis tools could reveal evidence for
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functionally de¢ned cortical systems, and whether such
systems would be organized in a way that is consistent with
the anatomical systems recently demonstrated in the cere-
bral cortex of the macaque monkey (e.g.Young1993;Young
et al. 1994). A preliminary report of this work has appeared
in abstract form (Hilgetag et al.1997).

2. METHODS

(a) Data
We collated data from19 published strychnine neuronographic

studies, including a total of 3897 tests for propagation of epilepti-
form activity in all cortical regions of the macaque cortex after
245 di¡erent local cortical applications of strychnine in vivo
(Bailey et al. 1943a,b, 1944a,b; Chusid et al. 1948; Dunsmore &
Lennox 1950; Dusser de Barenne & McCulloch 1938; Dusser de
Barenne et al.1938,1941; French et al.1948; Petr et al.1949; Pribram
et al. 1950; Pribram & MacLean 1953; Sugar et al. 1948,1950a,b,c;
Von Bonin et al. 1942; Ward et al. 1946). All studies employed the
method of strychnine neuronography as initially developed by
Dusser de Barenne (see Dusser de Barenne 1924 and Dusser de
Barenne & McCulloch 1938, 1939 for detailed discussions of the
methodology) and were performed according to very similar
experimental protocols. The general principle of strychnine
neuronography is the following: application of strychnine to the
cortical surface leads to local disinhibition by the antagonistic
e¡ects of strychnine on cortical GABAA and glycine receptors
(Klee et al. 1992; Shirasaki et al. 1991; Takahashi et al. 1994). The
activity is ¢rst observed locally and then spreads to spatially
remote cortical sites. According to Dusser de Barenne & McCul-
loch (1938), the evolvingglobalpattern of activity reaches a steady
state after 2^3 min and remains stable for up to 15 min after
removal of the stimulus. They emphasized that the strychnine-
induced activity patterns are reproducible within the same animal
and stable for any given area across animals. Exploring the func-
tional organization of sensory cortex, Dusser de Barenne &
McCulloch (1938) also found that the patterns of activity due to
strychnine neuronography matched those elicited by electrical
stimulation. Since neither deep undercutting of the cortex nor
circular thermocoagulationthroughout the entire thickness of the
cortex around strychninized cortical sites changed strychnine-
induced activity patterns, they concluded that the activity elicited
by strychnine was conveyed by corticocortical association ¢bres.
Until the mid-1950s, strychnine neuronography was extensively
used for the detection of association pathways. However, it could
not be clari¢ed experimentally whether the propagation of
strychnine-induced activity was restricted to monosynaptic
connections or also occurred across synapses (Dusser de Barenne
& McCulloch 1939; Frankenhaeuser 1951). Recent computer
simulations of strychnine-induced epileptiform activity spread in
cat cerebral cortex (Ko« tter & Sommer, this issue) clearly showed
that assuming monosynaptic propagation accounts poorly for the
observed patterns of activity, whereas polysynaptic propagation
reproduced these patterns signi¢cantly better. It therefore seems
very likely that the neuronographic data rather re£ect poly-
synaptic than monosynapticpropagationof activity.

The global cortical steady states of propagated activity after
local strychnine application represent stable and reproducible
temporal correlations between spatially remote neurophysio-
logical events. Applying the de¢nition of Friston (1994), they
specify the functional connectivity between a disinhibited
(strychninized) cortical area A and all other areas Bi (1 4 i 4
number of all cortical areas). For each pair (A, Bi), the interaction

can be positive (activity propagates from area A to area Bi), nega-
tive (area Bi was investigated, but no activity spread from A was
found), or it may be unknown (area Bi was not investigated).

We stored and processed the data by means of a speci¢cally
designed relational database (CoCoMac-Stry) implemented
with Microsoft Access (v. 7.0, Windows 95). This system main-
tains the original nomenclature of the experimental ¢ndings
and provides coordinate-independent algorithms for optimal
data conversion into freely chosen cortical parcellation schemes
by using objective relational transformation (ORTösee the
companion paper of Stephan et al. (this issue) for a detailed
description). In the present study, the experimental ¢ndings of
the various experiments were mapped by ORT to three parcel-
lation schemes (McCulloch 1944; Von Bonin & Bailey 1947;
Walker 1940). Since the accuracy of these maps varied for
di¡erent regions of the cortex, we present the results of the
analyses in a `hybrid map’ (¢gure 1). Von Bonin & Bailey’s
(1947) map for the macaque cortex, which is well known but of
low precision for the prefrontal cortex, was merged with Walk-
er’s (1940) parcellation of the prefrontal cortex, which is still
widely used. The combination of these two parcellation schemes
provided a balance between optimal precision of localization
and experimental limitations, and forms the basis for many
modern parcellation schemes (e.g. Barbas & Pandya 1989;
Carmichael & Price 1994; Felleman & Van Essen 1991; Pandya
& Seltzer 1982; Preuss & Goldman-Rakic 1991). As a control,
the data mapped to the scheme of McCulloch were analysed in
exactly the same way as the data mapped to the hybrid map.
Whereas in this paper we only present the results in the hybrid
map, the companion paper of Stephan et al. (this issue) includes
a comparison of some results in both maps.

For the analyses, the data were classi¢ed in two ways. Binary
classi¢cation di¡erentiated positive and absent activity spread,
whereas weighted classi¢cation distinguished ¢ve categories of
activity spread: absent (0), weak (1), moderate (2), strong (3)
and positive activity spread of unknown strength (X) (¢gure 2).
Our intention was to ¢nd out whether the mere existence or
absence of functional interactions alone would determine the
outcome of the analysis, or whether the strengths of the indivi-
dual interactions played an important role. Also, the binary
data served as a control for potential biases within the weighted
data due to methodological restrictions of strychnine neurono-
graphy (see } 4). Both classi¢cations distinguished between inter-
actions explicitly reported absent and those hitherto unstudied
by neuronographic methods. The cortical network represented
by these data was analysed for topological properties and func-
tional clusters by three independent methods, which are
described in the following sections.

(b) Graph-theoretical s̀mall-world’ analysis
As a ¢rst statistical method, we used a graph-theoretical

approach, which has been introduced recently for the structural
investigation of networks (Watts & Strogatz 1998). This method
assesses the global structural properties of a given network by
reference to two values. The characteristic path length, L,
indicates the average shortest separation of any two nodes of the
network (i.e. the number of sequential connections that are
necessary, on average, to link one area to another by the shortest
pathway), whereas the clustering coe¤cient, C, characterizes the
`cliquishness’ of the network (i.e. the tendency of the network to
form local clusters of densely connected areas). Computing these
values for 20 random matrices of the same size, density and
proportions of existing to absent interactions as our real network
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allowed us to compare the properties of the actual network of
interactions with the normal features of randomly connected
networks. We used a program implemented with Visual Basic
and Microsoft Excel 7.0 (Windows 95) to compute these values
according to the de¢nitions byWatts & Strogatz (1998).

(c) Optimal set analysis
Next, we applied an evolutionary optimization approach,

called optimal set analysis (OSA), originally developed for
analysis of anatomical connectivity (see Hilgetag, Burns,
O’Neill, Scannell & Young, this issue). This approach focuses on
the cerebral cortex as a network of interconnected areas and
evaluates the identities of clusters of strongly related structures
by minimizing explicit cost functions. The central idea is that

optimal sets of areas are characterized by a maximum of intra-
set connection density and a minimum of inter-set connectivity
(see Tononi et al. (1998) for a similar approach). Accordingly, a
two-component cost function is de¢ned consisting of an àttrac-
tion’ cost (C1: the number of actual relationships between
di¡erent sets), and a `repulsion’ cost (C2: the number of possible,
but absent relationships within sets of areas). The analysis begins
by the creation of random sets of areas, whose intra-set and
inter-set connection densities are then calculated. In an iterative
process of mutation and selection, individual areas are taken out
of one set and attributed to another set of areas, the costs of
these new arrangements evaluated and lower-cost solutions
evolved further until the total cost is minimal. Details of this
approach are described elsewhere (Hilgetag et al. 1998; Hilgetag,
Burns, O’Neill, Scannell & Young, this issue).

The strength of the individual interactions entering the
attraction component of the cost function depended on the data
classi¢cation. For data in the binary classi¢cation (existing and
absent interactions), there was only one attraction strength (set
to the numerical value of 1). For the weighted data originally
classi¢ed in ¢ve di¡erent categories (see above), there were three
di¡erent levels for the strength of existing interactions: weak
activation or activation of unknown strength (numerical value
of 1), moderate activation (2) and strong activation (3). Unstu-
died interactions were excluded from the analyses.

By varying the relative weights of attraction and repulsion in
the combined cost function, we created series of cluster arrange-
ments di¡ering in the number and composition of the optimal
clusters. Weights in the series ranged from a maximal attraction
weight of 11 to a maximal repulsion weight of 7. Throughout the
series, we varied either attraction or repulsion by steps of 1
while keeping the other constant at 1. The di¡erent constella-
tions of attraction and repulsion weightings emphasized speci¢c
aspects of the resulting area groupings. The most important
parameter constellations of OSA were as follows.

(i) Balance: attraction and repulsion were of equal value (set
to 1), that is, existent interactions between the clusters and
absent interactions within the clusters contributed equally
to the cost of the cluster structure. Clusters computed with
this option tended to be of intermediate size.

(ii) High attraction: attraction was as large as necessary to
ensure that clusters could not be further amalgamated.
This constellation demonstrated independent functional
units by leaving unmerged only those clusters that were
completely disconnected.

(iii) High repulsion: repulsion was as large as necessary to
remove all absent interactions from within the clusters, and
thereby locate them outside the resulting clusters. Clusters
could thus be envisaged as a maximally dense functional
core within a network of communicating areas. We have
previously named these clusters `building blocks’ (Hilgetag
et al. 1998), as they could not be subdivided any further by
increasing the repulsion weight.

(iv) Average: series of cluster arrangements were computed
between high repulsion and high attraction as described
above. Averaging across these results emphasized features
of the cluster con¢gurations that were constant irrespective
of the detailed parameters of the cost functions. Due to the
blurring e¡ect of averaging, however, the resulting clusters
showed less sharp borders and more complicated structure.

In repeated optimization series, every candidate cluster arrange-
ment that possessed a cost lower than, or within a 1% band of,
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Figure 1. Schematic map of the hybrid parcellation scheme in
which the results of this study are presented. Labels designate
approximate positions of areas. Prefrontal areas are named
according to Walker (1940), all other areas according to Von
Bonin & Bailey (1947). Sulcal morphology is adopted from
Preuss & Goldman-Rakic (1991a,b). Insular areas IA and IB,
supratemporal areas TB and TC, and postcentral area PB are
concealed by the lateral ¢ssure and the central sulcus,
respectively. (a) Lateral aspect. Note that this view also shows
parts of the orbital cortex, i.e. areas 11, 13 and 14; (b) medial
aspect; (c) ventral aspect.
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the lowest cost of all other cluster con¢gurations, and which was
di¡erent from all other previous solutions was stored. The
resulting population of optimal solutions was summarized by
`cluster plots’ of the cortical areas (e.g. ¢gures 3a,b, 4b and 5a).
These plots are symmetrical matrices in which each entry
re£ects the frequency with which the respective pair of areas
was found within a common cluster across all optimal cluster
con¢gurations (see Hilgetag, Burns, O’Neill, Scannell & Young
(this issue) for details). We called this relative number the àsso-
ciation’ between the two cortical areas. For any given area, the
vector of its association with all other areas (i.e. its row or
column in the cluster plot) was called the àssociationvector.’

(d) Statistical evaluation of optimal set analysis
results

Generally, we evaluated the resulting OSA cluster plots
according to two principles.

(i) As a general `cluster threshold’, we considered two areas to
be within the same cluster if they were grouped together in
more than half of all optimal solutions, that is, if their
mutual association was at least 50%.

(ii) We applied a `bridging principle’ for cluster membership.
Two areas A and C were considered to belong to the same
cluster, if there were areas B1 to Bn (n 51), for which each
of the associations (A, B1), (B1, B2), . . . , (Bn^1, Bn), (Bn, C)
were higher than the chosen cluster threshold.

To show the speci¢city of our OSA results we used two statistical
methods that compared the results of the analyses of the original
data with results obtained from randomized data. The matrices
of randomized data were derived from the original data matrices
by random reshu¥ing of the entries to keep the number and
proportion of positive and absent interactions constant. Twenty
matrices of random binary data were created both for the
hybrid map and the map of McCulloch (McCulloch 1944).
These random matrices were then processed by OSA (balanced
condition) in exactly the same way as the real data. First, to
determine the degree of agreement between the OSA results for
random and real data, we computed the linear correlation co-
e¤cient between the OSA result for each random data matrix
and the real data matrix. For this purpose, we applied the
Correl function of the Analysis Toolpack in Microsoft Excel 7.0
(Windows 95) to corresponding matrix ¢elds of the respective
cluster plots. As a second method, we determined the distri-
bution of lowest costs across all random matrices and compared
this to the lowest cost of the original data set.

Furthermore, we investigated whether the classi¢cation of the
data had any in£uence on the results by performing the analyses
both for the weighted and the binary data. The results were
then compared by a correlation analysis as described above.

Finally, we used hierarchical cluster trees for an alternative
representation of cluster con¢gurations of OSA results by
applying the Hierarchical Clustering method of SYSTAT 8.0
(SPSS, Inc.) to the OSA results, using an Euclidean distance
metric and single linkage (see ¢gures 4a and 5b). We restricted
this representation to areas from the three main clusters that
constantly emerged from all analyses (compare ¢gure 7). Hier-
archical cluster trees demonstrate the structure of cluster sets by
revealing hierarchical degrees of similarity between the clusters.
Starting with single areas on the left, repeated amalgamation of
areas (or resulting clusters) occurs at the Euclidean distance
between the association vectors of the two areas (or of the two
closest members of the clusters, respectively). Vice versa, one

may imagine the reverse process as one initial big cluster on the
right that is repeatedly split: the sooner a cluster splits, the less
similar are the resulting subclusters. The process of splitting is
continued until areas are either isolated or indistinguishable (i.e.
their association vectors have a Euclidean distance of zero).
Representation of OSA results by cluster trees is especially
useful for a comparison of high repulsion and averaged OSA
(see legends of ¢gures 4a and 5b).

(e) Non-metric multidimensional scaling
We employed non-metric multidimensional scaling (NMDS)

as a third, independent method to investigate the organization
of functional interactions among cortical areas. We here brie£y
summarize the main principles of this method as its application
to neuroanatomical data has already been described in detail
(Burns 1997; Burns & Young, this issue; Young et al. 1995).
NMDS provides high-dimensional metric representations of a
given set of elements with non-metric relationships (like
anatomical connectivity or functional interactions between
cortical areas), so that the distances between the elements in the
high-dimensional space optimally represent the non-metric
constraints. In the context of our analysis, NMDS tends to
group together areas that are strongly interacting and tends to
separate objects without interactions. For ease of visualization,
we have constrained these spatial representations to two dimen-
sions.

Calculations on the untransformed matrices of interactions
were performed using the MDS procedure in the SAS statis-
tical software package (v. 6.11 for Windows; SAS Technical
Report P-229 SAS/STAT Software: changes and enhancements.
Chapter 15: the MDS procedure).We generated two-dimensional
NMDS con¢gurations using cost functions with FIT ˆ 0.5, 1 and
2 under the tied and untied approaches in the SAS/STAT MDS
procedure (see Burns & Young, this issue).

3. RESULTS

(a) Statistics of functional connectivity data
For the 39 areas of our hybrid map, the experimentally

determined matrix contained 649 reports on positive and
absent spread of activity: that is, information about
43.8% of all possible interactions (¢gure 2). 34.1% of the
available information reported spread of activity to
cortical areas other than the strychninized one, and the
remainder showed absence of activity spread. Information
on individual areas showed a considerable variance: on
average, 42.9% of all possible interactions were examined
for an individual area with a standard deviation of 17.1%.
The range between the area studied most (premotor area
FB 69.7%) and least intensively (prefrontal area 12
10.5%) approximated a factor of seven. For prefrontal
areas 8A, 8B, 9, and 12 only absence of activity spread
was reported. These di¡erences of data background are
important for the interpretation of the analytical results.
Finally, it should be noted that no data were available for
prefrontal area 14 (see ¢gure 2). Therefore, this area had
to be excluded from the analyses.

(b) Graph-theoretical s̀mall-world’ analysis
The values L (characteristic path length) and C (clus-

tering coe¤cient) for the real network were Lreal ˆ 2.1730
and Creal ˆ 0.3830. The statistical distribution of these
values for 20 random networks of the same size and
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density delivered the following values: Lrnd, mean ˆ 2.1500,
s.d. ˆ0.0164; Crnd, mean ˆ 0.1557, s.d. ˆ0.0149.

The characteristic path length Lreal of our real network
is not signi¢cantly higher than the mean path length
between nodes of a random network (Lreal is less than 1.5
standard deviations apart from the average Lrnd), whereas
the clustering coe¤cient C of our real network is signi¢-
cantly larger than could be expected for any random
network (Creal is more than 15 standard deviations higher
than Crnd). This constellation (LrealºLrnd but Creal ¾ Crnd)
is consistent with the de¢nition of a `small-world’ network
(Watts & Strogatz 1998), that is our real network main-
tains a highly clustered structure while still assuring that
any two of its members are not signi¢cantly further apart
than they would be in a randomly connected network. As
randomly connected networks on average possess very
low characteristic path lengths, this feature indicates that
interactions in the actual network are very e¤ciently
distributed. The position of Creal within the distribution
for Crnd makes it extremely unlikely that the clustered

structure of our real network could be mimicked by a
randomly constructed network of the same size and
connection density.

If our data on functional connectivity characterize a
very e¤ciently structured network (highly clustered struc-
ture plus low communication costs), what areas constitute
these clusters, and what might be their functional
context? These questions were addressed by applying
OSA and NMDS to the data.

(c) Optimal set analysis
This section describes the OSA results, comparing the

three-parameter constellationsöbalanced, high repulsion
and averagedöbetween the binary and weighted classi¢-
cation of the data in detail (see ¢gure 7 for a summary).
As for high attraction, this condition led, for both binary
and weighted data, to the formation of one large cluster
comprising all but the four poorly investigated prefrontal
areas with no reported interactions (see above). This
result demonstrates that the functional cortical network
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Figure 2. Matrix of functional connectivity in macaque cortex. Spread of activity between cortical areas of the macaque as
determined by strychnine neuronography. Areas strychninized are listed in rows and recorded areas in columns. Properties of
propagated activity are indicated in the following way: 0, absent; 1, weak; 2, moderate; 3, strong; X, activity spread of unknown
strength; blank ¢elds, not investigated. Areas are named according to a combined scheme of Von Bonin & Bailey (1947) and
Walker (1940); see ¢gure 1.
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Figure 3. Cluster plots
of results from balanced
OSA, both for the
(a) weighted data and
(b) the binary data.
Matrices have been
ordered identically to
allow a direct comparison
(note the high similarity
between the results) and
to optimally re£ect the
cluster con¢guration of
both results. Intensity of
shading indicates how
frequently two areas were
found to share the same
cluster across all optimal
groupings. Areas are
named according to the
hybrid map of ¢gure 1.
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Figure 4. (a) Hierarchical cluster tree
of the three main clusters resulting from
high-repulsion OSA in case of the weighted
data. Comparing this representation to the
cluster tree of averaged OSA (¢gure 5b)
illustrates the di¡erences between these OSA
parameter constellations. High repulsion as
in this ¢gure favours rather small, clearly
de¢ned, dissimilar clusters, thus splitting
occurs at comparatively high distances
(see ½ 2). (b) Cluster plot of high repulsion
OSA for the binary data. Nomenclature and
shading as in ¢gure 3.
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Figure 5. (a) Cluster plot of
averaged OSA for the weighted
data. Nomenclature and shading as
in ¢gure 3. (b) Hierarchical cluster
tree of the three main clusters from
averaged OSA results in case of
the binary data. A comparison
with ¢gure 4a clearly shows the
di¡erences between high repulsion
and averaged OSA: for the
averaged condition shown in this
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large clusters with fuzzier borders,
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distances at which ¢nal clusters
separate in this ¢gure (see } 2). In
this case, this is especially obvious
for the somatomotor and the visual
cluster.
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does not contain clusters completely devoid of in£uences
from other clusters.

In the following, we indicate the range from the lowest
to the highest association if we describe several areas of
the same cluster but with di¡erent degrees of association.
Starting with the balanced condition, OSA delivered
three main clusters for the weighted data (¢gure 3a).

(i) A ¢rst cluster comprised the primary motor area
(area FA), the lateral and medial premotor areas
(areas FB, FBA, FCBm), the primary sensory cortex
(areas PB, PC) and parietal areas (areas PEm, PEp,
PF, PG), as well as lateral prefrontal area 46. All
areas of this cluster had a mutual association of
99.2^100%. We refer to this cluster as the somato-
motor cluster.

(ii) A second cluster contained the primary visual cortex
(area OC), extrastriate visual cortex (areas OA,
OB), temporo-occipital cortex (area TEO), superior
temporal cortex including parts of the superior
temporal sulcus (area TA), inferotemporal cortex
(areaTE) and medial temporal cortex (areaTF). All
areas had a mutual association of 100%. We called
this cluster the visual cluster. In 69.2% of all
optimal solutions the primary auditory cortex (area
TC) also fell into this group. This is due to the rather
limited amount of data available for this area (for
area TC only 19.7% of all possible interactions were
investigated, only four of which showed spread of
activation; these were reciprocal interactions with
temporal areasTA and TE (see ¢gures 2 and 6a,b)).

(iii) A third cluster contained areas of orbitofrontal cortex
and the frontal operculum (areas 13 and FCop),
anterior insular cortex (area IA) and polar, medial
and allocortical regions of the temporal lobe (areas
TG, TH and A, respectively). Again, the association
between the areas of this cluster was 100%. We refer
to this group as the orbito-temporo-insular cluster.

Two further small clusters were observed in this case but
were not consistently reproduced under other conditions.
The ¢rst consisted of two prefrontal areas, namely fronto-
polar area 10 and medial subcallosal area FL, which were
associated by 100%. The second contained posterior
insula cortex (area IB), parts of the supratemporal plane
(area TB) and the parietal operculum (area PCop). The
association between these areas ranged between 61.7 and
83.1%. Eight areas did not cluster but remained isolated:
prefrontal areas 8A, 8B, 9, 11, 12, 45 and cingulate areas
LA and LC. Except for area 45, the isolated position of
these prefrontal areas was due to the small amount of
data availableabout their interactions (between10.5^26.3%
of all possible interactions were examined, all of which
were absent for areas 8A, 8B, 9, 12; ¢gure 2).

The results of balanced OSA for the binary data
(¢gure 3b) and weighted data yielded very similar results
as established by a correlation analysis (r ˆ 0.82, see
below). The most notable di¡erence was that the visual
areas TF and TEO did not cluster with the other visual
areas but formed a group on their own, joined by
posterior cingulate area LC (association 97.8^100%).
Also, the orbito-temporo-insular cluster, which comprised
the same areas as seen with the weighted data, showed a
subtle splitting: the orbitofrontal and insular areas (areas

12, FCop and IA), on the one hand, and the temporal
areas (areas TG and A), on the other hand, each showed
a cluster association of 100%, while these two groups still
clustered in 90.2% of the optimal solutions. The associa-
tions of area TH with the other areas of this cluster were
weaker than in the case of the weighted data (67.4^77.2%).
Finally, two minor di¡erences of the somatomotor cluster
were noticed: compared to the weighted data, superior
parietal area PEp clustered more strongly with anterior
cingulate area LA (association of 66.8%) than with the
other areas of the somatomotor cluster; lateral prefrontal
area 45 which remained isolated in the case of the
weighted data, joined the somatomotor cluster (associa-
tion of 84.2%).

High repulsion split the clusters obtained by the
balanced condition into smaller clusters with no
remaining absent interactions between their members,
the so-called `building blocks’. This splitting into sub-
clusters is visualized especially well by the hierarchical
cluster tree shown for weighted data in ¢gure 4a. The
results for binary and weighted data were again highly
similar (the correlation between the cluster plots was
r ˆ 0.93, see below).

For both data classi¢cations, the orbito-temporo-
insular cluster split into an orbito-insular (areas 13, FCop,
IA) and a temporal (areas TG, TH, A) subcluster, each
having cluster associations of 100%. The visual cluster
showed a similar splitting into three visual subgroups: the
primary visual cortex OC clustered loosely (weighted
data: 61.2^64.7%; binary data: 60.0^64.0%) with the
strongly associated superior and inferior temporal areas
TA and TE (weighted data: 94.1%; binary data: 96.0%).
Areas TF and TEO (both cases: 100%) formed a second
subgroup, and areas OA and OB (weighted data: 65.9%;
binary data: 64.0%) a third. In contrast to the orbito-
temporo-insular and visual clusters, the somatomotor
cluster showed a less distinct subdivision. The majority of
its members remained closely associated, especially
primary motor area FA, premotor area FB, primary
sensory area PC and lateral parietal areas PEm, PF and
PG all of which maintained an association of 100% in
case of the binary data and of 98.8^100% for the
weighted data (in the latter case, area FB was less
strongly associated with 51.8^52.9%).

Finally, we looked at the results of the average condi-
tion for both weighted and binary data (¢gure 5a,b).
Again, the results for binary and weighted data were very
similar, the correlation between the respective cluster
plots being r ˆ 0.83 (see below). Because of the `summar-
ized’ features of cluster con¢guration with fuzzier, less
clear-cut clusters, the three main clusters are somewhat
less separable than for the other conditions. This is espe-
cially obvious for the binary data where the visual and
somatomotor cluster show a tendency to merge (note the
low distance at which the two clusters separate in the
clustertree of ¢gure 5b). As for the somatomotor cluster,
the most cohesive areas across all parameter constella-
tions were primary motor area FA, primary sensory area
PC, premotor areas FB and FCBm, and parietal area
PEm. These areas showed mutual associations of 96.4^
100% for the binary data and 99.1^100% for the
weighted data (for the latter, FB was less strongly
connected with 74.7^75.2%). To this core, all other areas
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of the somatomotor cluster remained closely associated.
Only prefrontal area 46 (weighted data 32.7^73.3%;
binary data 81.0^89.6%) and primary sensory area PB
(weighted data 31.0^47.8%; binary data 16.9^20.1%) clus-
tered less strongly than for the other parameter condi-
tions. Referring to the orbito-temporo-insular cluster,
both cases indicated a tendency to split into an orbito-
insular and a temporal subgroup. For the weighted data,
the association between these two groups was even low
enough to fall below the cluster threshold (46.1%).
Temporal areas TG, TH and A associated by 98.9^100%
(binary data) and 100% (weighted data), respectively.
Orbitofrontal area 13 and anterior insular area IA also
showed an association of 100% for both classi¢cations,
whereas the frontal opercular area FCop had a somewhat
lower association (weighted data 57.5%; binary data
93.9%). Like the two former clusters, the visual cluster
also remains remarkably stable for both data classi¢ca-
tions: areas OA, OB, OC, TA and TE still associate by
98.4^99.7% (weighted data) and 96.5^99.7% (binary
data). Area TEO remains less strongly connected,
(weighted data 46.1%; binary data 76.3%), whereas area
TF prefers a rather loose association with posterior cingu-
late area LC (weighted data 56.1%; binary data 66.6%).

(d) Statistical analysis of the optimal set analysis
results

Statistical analysis of OSA results showed a very low
correlation between the results of any random data set
and the real data. Absolute values of the correlation co-
e¤cients ranged between r ˆ 0.0005 and r ˆ 0.0784
(mean ˆ 0.0236; s.d. ˆ0.0193), thus clearly demonstrating
that the clusters computed by OSA from the real data
were extremely unlikely to have been obtained by chance.

The analyses of the minimum costs for optimal solu-
tions across all data sets were highly compatible. The
distribution of minimum costs for optimal solutions from
all 20 random data sets was characterized by a mean of
166.5 and a standard deviation of 3.8182. The minimum
cost for optimal solutions for the original data, however,
was more than nine standard deviations lower, that is 132.
Compared to the distribution for random data, this shows
that it is extremely unlikely that any random network has
a structure with similarly low numbers of violations
against the cluster rules as the real data.

By contrast, correlation between the OSA results for
the original binary and weighted data was very high: for
the balanced condition the correlation was r ˆ 0.82, for
high repulsion r ˆ 0.93 and for the averaged condition
r ˆ 0.83. This also con¢rmed that the e¡ects of di¡erent
activity gradings for the original data were small.

(e) Non-metric multidimensional scaling
The results of the NMDS analyses were fully compa-

tible with the cluster con¢gurations obtained by OSA.
Two-dimensional plots of NMDS representations of the
interacting areas (¢gure 6a,b shows two typical examples)
not only reproduced the three main clusters of the OSA
solutions, but also gave further information about the
overall structure of the network and the position of indivi-
dual areas within it. For example, these plots con¢rmed
well-established notions about the role of parietal areas,
which had been less visible in the OSA solutions. Thus,

they showed that the parietal areas have close a¤liations
to both somatomotor and visual areas, anterior parietal
areas (PEm and PF) being more strongly orientated
towards the somatomotor cluster and posterior parietal
areas (PEp and PG) with a tendency to draw nearer the
visual areas. Also, the intermediate position of prefrontal
area 46 between motor and visual areas was emphasized.
As for the visual areas, the unique position of the
primary visual cortex (area OC) was demonstrated.
Most interesting, however, was a clearly visible grouping
of the visual areas into two lines, both of which originated
from the primary visual cortex and were easily identi¢ed
as parietal (PG, PEp, PF, PEm) and temporal visual
areas (TEO, TE, TA, TF), respectively. For both of these
streams, even the posterior^anterior topological sequence
of the areas was reproduced fairly well. The NMDS plots
also clearly showed the isolated position of sparsely inter-
acting auditory area TC due to its exclusive interactions
with the temporal areas TE and TA. As for the orbito-
temporo-insular cluster, its subdivision into orbito-insular
and temporal components which had been suggested by
the high repulsion OSA solutions was con¢rmed by the
NMDS analysis. Speci¢cally, the NMDS results were
compatible with the indications of OSA cluster plots
about the higher cohesion of the temporal subgroup and
the position of frontal opercular area FCop as the least
strongly associated area within this cluster. Finally, the
NMDS plots indicated that the primary sensory cortex
(area PC) tended to take a unique position within the
somatomotor system.

4. DISCUSSION

In the following, we discuss the main ¢ndings of this
study, starting with the results of the graph theoretical
`small-world’ analysis. The `small-world’ phenomenon has
recently been described by Watts & Strogatz (1998), who
introduced this term for a class of networks which
combine a highly clustered structure with short average
path length (i.e. high e¤ciency of communication). Such
networks exhibit considerable advantages over both
neighbourhood- and randomly connected networks,
including enhanced signal^propagation speed, computa-
tional power and synchronizability with a minimal
number of connections. Watts & Strogatz demonstrated
that `small-world’ principles are found in complex social
and biological systems, such as the nervous system of the
nematode Caenorhabditis elegans. Suspecting that ` . . . the
small-world phenomenon is. . . probably generic for many
large, sparse networks found in nature’, they explicitly
put forward the hypothesis that the primate brain also
shows small-world architecture. To our knowledge, our
study is the ¢rst investigation to support this hypothesis
for functional interactions in the primate brain, while
Hilgetag, Burns, O’Neill, Scannell & Young (this issue)
demonstrate similar features of the structural organiza-
tion of this system.

Whereas the fact of a clustered organization of the
cortical network was apparent in the `small-world’
analysis, its actual con¢guration was revealed by the
results of OSA and NMDS analyses. Application to
di¡erently classi¢ed (binary versus weighted) and
di¡erently mapped (hybrid map versus parcellation of
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McCulloch) functional connectivity data delivered
remarkably robust results (¢gure 7 summarizes the main
¢ndings of the OSA results). Are the resulting cluster
con¢gurations functionally plausible and compatible with
what is already known about the functional organization
of primate cerebral cortex?

Dealing with the somatomotor cluster ¢rst, the insepar-
ability of precentral motor and postcentral somatosensory

areas is not very surprising. The notion of their close
integration has been suggested by ¢ndings on strong
anatomical connections between primate primary motor
and primary sensory areas (e.g. Stepniewska et al. 1993),
and by analyses of the whole primate system of cortico-
cortical connections (Young1993; Young et al. 1994). It has
also been con¢rmed repeatedly by functional studies. For
example, lesion studies in monkeys demonstrated the
necessity for somatosensory input to motor cortex for the
acquisition of novel motor skills (Pavlides et al. 1993), and
imaging experiments in humans showed that precentral
and postcentral areas are not only jointly involved in
actual motor performance but may also cooperate in
motor imagery (Porro et al. 1996).

Evidence for the close participation of parietal areas in
motor and sensory function has also been gained in
recent years. This evidence concerned all lateral parts of
parietal cortex (i.e. areas PEm, PG, PF and lateral
portions of PEp in Von Bonin & Bailey’s map). For
example, recent single-neuron recordings in behaving
monkeys demonstrated that the activity patterns of cells
from posterior parietal areas LIP and PRR re£ected
changes of speci¢c motor plans (Snyder et al. 1998).
Reviewing experiments of single-unit recordings in
superior parietal cortex of the macaque, Seal (1989)
suggested that superior parietal cortex ` . . .may function
in the transformation of sensory activity into motor
activity’. As for the integration of prefrontal area 46 into
the somatomotor cluster, several anatomical tracer studies
have demonstrated that area 46 is reciprocally connected
with premotor and parietal areas (Barbas & Pandya 1987;
Bates & Goldman-Rakic 1993; Cavada & Goldman-
Rakic 1989; McGuire et al. 1991; Petrides & Pandya 1984).
The NMDS analyses pointed to some additional relation-
ships of parietal cortex and area 46 (¢gure 6a,b). For
example, they showed the close relationships between
posterior parietal (PEp, PG) and prestriate areas (OA,
OB) whose cooperation in visuospatial functions is well
established experimentally (Baizer et al. 1991; Colby et al.
1988; Ungerleider et al. 1998). Area 46 was assigned an
intermediate position between motor and visual areas,
thus re£ecting its strong anatomical connections both
with motor (see above) and visual areas (Barbas 1988;
Schwartz & Goldman-Rakic 1984).

Turning to the visual cluster, some results of our
analyses merit special attention. For both data classi¢ca-
tions, high repulsion OSA led to the formation of distinct
visual subclusters (¢gure 4a,b): prestriate areas OA and
OB form a ¢rst, inferotemporal cortex TE and superior
temporal cortex TA a second, and areas TF and TEO a
third group. Striate cortex OC, although loosely asso-
ciated to the second group, seems to take an independent
position in this con¢guration. This con¢guration is
clearly con¢rmed by the two-dimensional NMDS plots
(¢gure 6a,b). Additionally, the latter clearly show a subdi-
vision of the visual areas into the ventral and dorsal
streams suggested by Ungerleider & Mishkin (1982). This
suggested organization of the visual system has been
given support both experimentally (see Ungerleider et al.
1998 for a summary) and by analyses of the visual
system’s anatomical connectivity (Young 1992; Young et al.
1994, 1995). Our global analysis of activation data delivers
further evidence for this hypothesis. Startlingly, the data
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(b)

(a)

Figure 6. Two typical two-dimensional plots of a metric
representation of the areal interactions in the network as
obtained by NMDS. Generally, distances between areas are
an inverse measure for the degree of similarity of their connec-
tivity patterns (see } 2). Arrows between areas represent
direction of observed activity spread. Areas 8A, 8B, 9 and 12,
for which only absent interactions were reported (see table 1),
were not included in this analysis. (a) Result from a two-
dimensional NMDS analysis with a FIT value set to 1 (so-
called `STRESS’), under tied conditions. (b) Result from a
two-dimensional NMDS analysis with a FIT value set to 2
(so-called `SSTRESS’), under tied conditions (see Young et al.
(1995) for details).
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on which our analysis is based were recorded with a
rather crude technique more than 40 years ago. Appro-
priate analysis of them could therefore have anticipated
by decades the ¢rst description of this important feature
of the visual system’s organization.

Interpretation of the orbito-temporo-insular cluster is
less straightforward than the two previous cases. Anato-
mically, numerous tracing studies have shown that the
areas of this cluster form a dense network of reciprocal
connections (Carmichael & Price 1996; Mesulam &
Mufson 1982b; Moran et al. 1987; Morecraft et al. 1992;
Mufson & Mesulam 1982). Thus, the strong mutual inter-
actions of these areas, which are expressed by their
consistent clustering in OSA results, have well-documented
anatomical counterparts. Functionally, the situation is less
clear. Some authors have hypothesized that orbitofrontal
and insular regions jointly form the cortical centre of
gustatory information processing (Rolls 1989; Yaxley et al.
1990). Other proposals have grouped these areas together
in the concept of the `limbic system’. Pribram & MacLean
(1953) and Mesulam & Mufson (1982a,b), for example,
consider insula, lateral orbital surface and temporal pole
as `paralimbic areas with an olfactory allocortical focus’.
Lately, the concept or concepts of the `limbic system’ have
received an increasing amount of criticism on empirical
and epistemological grounds (Blessing 1997; Ko« tter &
Meyer 1992; Ko« tter & Stephan 1997; LeDoux 1991), and

it has been argued that the assignment of the term
`limbic’ to these areas has neither structural nor func-
tional explanatory power. Nevertheless, the anatomically
de¢ned concept of Mesulam & Mufson (1982b) matches
our functionally de¢ned orbito-temporo-insular cluster
surprisingly well: ` . . .common connectivity patterns
support the conclusion, based on architectonic observa-
tions, that the insulo-orbito-temporopolar component of
the paralimbic brain should be considered as an inte-
grated unit of cerebral organization’.

Having discussed experimental anatomical and physio-
logical evidence for the cluster con¢gurations revealed by
OSA and NMDS analyses, we now address the general
question of functional interpretations based on neurono-
graphic data: does the method of strychnine neurono-
graphy give valid information about organizational
principles of cerebral cortex, or do neuronographic data
rather represent spread of unphysiological, and so un-
interesting, hyperexcitation? This issue bears two aspects:
the initial stimulus, the pharmacologically induced
cortical disinhibition does not induce normal functional
brain states, but leads to epileptiform activity in the areas
involved. For this reason, strychnine and other pharma-
cological blockers of inhibition (such as penicilline and
bicuculline) are standard models in epilepsy research (for
recent examples see Holmes 1994; Kehne et al. 1997;
Rostock et al. 1997). It is clear, however, that activity
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propagationöbe it physiologically normal or notöis
constrained by the underlying anatomy. Therefore, organ-
izational principles of cerebral cortex should be revealed
by the activity patterns of both physiological and patho-
physiological stimulation, the latter may even bring out
these principles more clearly. This argument is supported
by the ¢ndings of Hilgetag, Burns, O’Neill, Scannell &
Young (this issue). The structural clusters that they
computed from anatomical data on association ¢bre
connectivity by means of OSA and NMDS bear a
remarkably close relationship to the functional clusters
revealed by this study: somatomotor, visual and orbito-
temporo-insular groups are constitutive of the structural
network as well. A statistical comparison of the cluster
con¢gurations for structural and functional connectivity
has been prevented so far by the di¤culty of translating
between the di¡erent parcellation schemes underlying the
two kinds of data (see below).

What is the contribution of this analysis to our under-
standing of the organizational principles of cerebral
cortex? Advances in functional imaging techniques have
generated a strong interest in analytical methods to aid
the interpretation of functional data in terms of under-
lying anatomy, and especially with respect to the interac-
tions between brain areas. A well-known example of this
kind is the work of McIntosh and colleagues who have
introduced the statistical technique of Structural Equation
Modelling (SEM) to analyse data on functional inter-
actions between cortical areas taking into account the
constraints of known anatomical connectivity (McIntosh
& Gonzalez-Lima 1991). SEM aims at determining `path
coe¤cients’ within a given anatomically de¢ned network
(i.e. the functional impact one brain structure exerts on
another via a given pathway). This method has been
applied to characterize cortical networks in various func-
tional contexts, for example object and spatial vision
(McIntosh et al. 1994), working memory (McIntosh et al.
1996), attention to visual motion (Bu« chel & Friston 1997)
and episodic memory retrieval (Kohler et al. 1998).
Another recent approach byTononi et al. (1998) is concep-
tually closely related to the principles of OSA. Within this
approach, a `functional cluster’ is de¢ned as a set of brain
regions which interact more strongly among themselves
than with the rest of the brain (see also Young et al. 1995).
Tononi et al. (1998) extracted such functional clusters
from imaging data by computing c̀luster indices’ that
indicate the degree of internal cohesion and external
isolation of a given set of brain regions.

Compared to analyses on structural data (Burns &
Young, this issue; Felleman & Van Essen 1991; Hilgetag et
al. 1996; Jouve et al. 1997; Scannell et al. 1995; Young 1992,
1993), all available analytical studies on functional data
have a considerable drawback: none has made use of a
systematically collated database comprising a large
number of individual experiments from di¡erent parts of
the cortex. Only in this way, however, it is possible to aim
at insights into global characteristics of cortical organiza-
tion. Although initial databases of imaging data are
currently being constructed (e.g. Roland & Zilles 1996),
their use for analyses based on more than one study is
hampered by the context-dependency of imaging (and
other behaviour-related) experiments. Even minor di¡er-
ences in the underlying experimental paradigm can lead

to considerably di¡erent sets of brain structures to
become involved (see McIntosh et al. (1996) for an
example where slight changes in recall time led to the
activation of di¡erent cortical networks). Due to this
context dependency, such experiments are di¤cult to
compare, thus restricting analytical approaches to the
results of a single study. At best, the existing databases on
functional data may help to clarify the role of a speci¢c
brain structure in di¡erent functional contexts (e.g. Paus
et al. 1998).

Context dependency, however, is not a signi¢cant
problem for strychnine neuronography. Activity patterns
resulting from local strychnine application have been
described to be reproducible within the same animal and
stable for a given area across animals (Dusser de Barenne
& McCulloch 1938). This high context independence of
the induced activity patterns is explicable by the intracor-
tical mode of stimulation and the high strength of the
applied stimulus. Blocking cortical inhibition with high-
potency strychnine is a very strong stimulus su¤cient to
ensure that the locally induced overexcitation is propa-
gated via the association ¢bres of the a¡ected cortex, irre-
spective of the functional state of the remaining cortex
(Chatt & Ebersole 1988; Klee et al. 1992). Context
independence of strychnine-induced activity patterns may
be further enhanced by the use of barbiturates and ether
for anaesthesia under which the animals were kept (see
neuronography references above). Although studies on the
impact of anaesthesia on cortical activity have delivered
complex and partially contradictory results, it seems
likely that by di¡erent mechanisms anaesthetics generally
lead to a decrease of excitatory and to an increase of inhi-
bitory activity (El-Beheiry & Puil 1989; Pocock &
Richards 1993). It is especially well established for barbi-
turates that they diminish release of excitatory transmit-
ters, enhance inhibitory synaptic transmission and
increase a¤nity of GABAA to its receptor (Pocock &
Richards 1993). Furthermore, Bowery & Dray (1976)
showed that the disinhibitory e¡ects of locally applied
strychnine can be reduced by barbiturates. Finally, there
is some evidence that most anaesthetics, including
barbiturates and ether, primarily impair thalamocortical
functional connectivity (and thus the in£uence of sensory
stimuli) but have comparatively small e¡ects on cortical
activity as such (Angel 1991, 1993). These ¢ndings
together suggest for strychnine neuronography that
(i) evoked activity patterns are not strongly altered by
anaesthetics; and (ii) local overexcitation due to strych-
nine application is achieved even in spite of enhanced
inhibitory mechanisms.

It should be pointed out, however, that strychnine
neuronography does not seem to be an appropriate
method for all parts of the nervous system. For example,
it was found that strychnine failed to elicit any activity in
the cerebellum, the olfactory bulb and the vagal nucleus
(Dow 1938; Frankenhaeuser 1951). This is probably due to
the fact that initiation, sustenance and propagation of the
local disinhibition by the action of strychnine on GABAA
and glycine receptors depends on both the respective
receptor distributions and the microcircuitry of the
strychninized region. Apparently, in spite of regional
di¡erences in microcircuitry and distributions of glycine
(Fujita et al. 1991; Naas et al. 1991; Sato et al. 1992) and
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GABAA receptors (Gebhard et al. 1995; Geyer et al. 1998;
Kritzer et al. 1992), the cerebral cortex generally seems to
be more susceptible to strychnine than other parts of the
brain. This constraint has certainly contributed to the fact
that since the mid-1950s strychnine neuronography has
lost its former importance for the characterization of
functional interactions and has successively been replaced
by methods of electrical stimulation. Also, it aggravates
comparisons between the strength of elicited responses
from di¡erent cortical regions. In this study, we took this
uncertainty into account by performing the analyses both
for weighted and binary data (see above).

On the whole, this study is the ¢rst attempt to unravel
context-independent global characteristics of functional
organization of cerebral cortex on the basis of a database
containing results from a large number of experiments. It
shows that modern computational analysis of neuro-
nographic data provides a global view on the organiza-
tional principles of primate cerebral cortex that is
compatible with the overall picture from modern
experimental investigations. Surprisingly, a single, albeit
large, collection of context-insensitive functional data is
su¤cient to account for many insights gained by a multi-
tude of context-sensitive experimental approaches. In
spite of their age and their methodological restrictions,
neuronographic experiments still represent a unique
source of systematic data on functional connectivity of
cerebral cortex. Their quality is indirectly con¢rmed by
the results of our analyses. The global network de¢ned by
neuronographic data shows properties that could not
have been produced by random data, and its structure is
compatible with recent studies, including very detailed
features, such as the di¡erentiation of the visual system
into ventral and dorsal streams of processing. The most
important global properties of this functional network of
primate cerebral cortex are as follows.

(i) Three independent methods of analysis (`small-world’
analysis, OSA, NMDS) showed that the functional
network of interactions within cerebral cortex is not
homogeneous, but is characterized by a highly clus-
tered structure.

(ii) Graph-theoretical analysis revealed that the cortical
network is likely to be a `small-world’ network. This
is empirical evidence for the recent hypothesis of
Watts & Strogatz (1998), see above.

(iii) OSA and NMDS results showed that cortical areas
form three main groups with high intrinsic and low
extrinsic functional interactions: a somatomotor
cluster, a visual cluster and an orbito-insular-
temporal cluster. These results were remarkably
robust across the di¡erent classi¢cations and
mappings of the data (¢gure 7) and are compatible
with a variety of experimental ¢ndings.

As mentioned above, Hilgetag, Burns, O’Neill, Scannell
& Young (this issue) performed identical analyses on
anatomical connectivity data, with results compatible
with ours. Due to the di¡erent parcellation schemes,
however, a statistical quanti¢cation of the similarity of
cluster con¢gurations for structural and functional
connectivity has been prevented so far. However, this is
becoming possible by means of recently developed
databases containing structural connectivity and areal

relationships between the di¡erent parcellation schemes
involved, so that Objective Relational Transformation
(ORT; see the companion paper of Stephan et al., this
issue) can be used to map the data into a common
descriptive space. Statistical analysis of structurally and
functionally de¢ned clusters is thus being made possible,
and the detailed nature of the structure ^function
relationships indicated by Hilgetag, Burns, O’Neill,
Scannell & Young (this issue) and this paper will be
speci¢ed in more detail in the future.
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